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The problem of the stability of the equlllbrlum states of nonholonomlc sys- 
tems has been considered in the works of ~ttaker [l], Bottema [ 2], Aiser- 
man and Gantmacher [3], O~morehev [4], Knlazev [5] and others. However, the 
methods c f inveet~tlr~ the stability as proposed in these papers, arm the 
point of vlew req~e~d~ the nature of the zero roots, are not quite consis- 
tent. As Is well known, Whittaker conoldered It possible to inte~ate the 
llnearlzed equations of nonholonomlc constraints, after which the difference 
b e t w e e n  h o l o n o m i c  and  n o l l h o l o z m ~ c  s y s t e m s  would  d i s a p p e a r .  E s s e n t i a l l y ,  
W h i t t a k e r  r e d u c e d  t h e  s t a b i l i t y  p r o b l e m  o f  t h e  ~ q u i l l b r l u m  s t a t e s  o f  a n o n -  
holonomlc system to the @orrespond~ problem for a holonomlc system in w h i c h  
the ntwber of generallzed co~tes was decreased by the number of nonholo- 
nomic constraint equations. ~ottema cast doubts on Whlttaker's deductions 
and, by ellmlnat~ the inaccuracies in the reasoning, showed that in con- 
trast t o  a h o l o n o m i c  s y s t e m  t h e  c h a r a c t e r i s t i c  d e t e r m i n a n t  o f  a n o n h o l o n o m l c  
s y s t e m  i s  a s y m m e t r i c  and t h a t  t h e  c h a r a c t e r i s t i c  e q u a t i o n  o f  a n o n h o l o n o m i c  
s y s t e m  h a s  z e r o  r o o t s  e q u a l  h i  number t o  t h e  number o f  h o l o n o m l c  c o n s t r a i n t  
equations. In vlew of this, Botteua concluded that here occurs a critical 
c a s e  o f  t h e  s t a b i l i t y  t h e o r y  f o r  i s o l a t e d  e q u i l i b r i u m  s t a t e .  C o n s e q u e n t l y ,  
t h e  q u e s t i o n  o f  t h e  s t a b i l i t y  o f  t h e  e q u i l i b r i u m  o f  a n o n h o l o n o m i c  s y s t e m  
I n  t h e  l i n e a r  a p p r o x i m a t i o n  s t i l l  r e s m l n s  o p e n  b e c a u s e  t o - d a t e  we do n o t  know 
the general conditions rot the stab111ty o f  systems whose characteristic 
equation has an arbitrary number of zero roots. However, Aiserman and Qant- 
macher noted that In the given case the problem has been coapletely solved. 
They showed t h a t  t h i s  p r o b l e m  r e d u c e s  t o  a s p e c i a l  c a s e  w h i c h  h a s  b e e n  com- 
p l e t e l y  invest~ted by A.N.Liaptmov and l.O.Nalkln. Alsermsn and ~tma.cher 
established that the equilibrium state of nonholonomlc system is arable (but 
not asym~totlcally) if all the roots of the characteristic equation, besides 
the zero roots which in number equal the number of nonholonomlc constraint 
equations, have negative real parts. Relying on this result, KD£asev sug- 
gested that we should consider as critical only those cases in which the num- 
ber of zero roots of the characteristic equation Is larger than the number 
o f  n o n h o l o n o m i c  c o n s t r a i n t  e q u a t i o n s .  I n  h i s  own p a p e r  [ 5 ] ,  K n l a z e v  s t u d -  
i e d  t h e  c a s e  w h e r e  t h e  number o f  z e r o  r o o t s  was one more t h a n  t h e  number o f  
n o n h o l o n o m l c  c o n s t r a i n t  e q u a t i o n s .  F i n a l l y ,  we m e n t i o n  t h e  p a p e r  [4] o f  
Obmorshev who c o n s i d e r e d  t h e  l i n e a r i z e d  e q u a t i o n s  o f  s m a l l  o s c i l l a t i o n s  o f  
a n o n h o l o n o m l c  e ~ t e m  n e a r  t h e  e q u i l i b r i u m  s t a t e  i n  t h e  g e n e r a l  c a s e ,  and  
a l s o  t h e  e q u a t i o n s  o f  s m a l l  o s c i l l a t i o n s  r e l a t i v e  t o  t h e  s t a t i o n a r y  m o t i o n  
o f  a C h a p l y ~ i n  eTs t em.  ~ t h  r e g a r d  t o  t h e  z e r o  r o o t s ,  Obmorshev n o t e d  t h a t  
Bo t t em a  had n o t  i n t e ~ a t e d  t h e  linearlzed n o n h o l o n o m l c  c o r m t r a i n t  e q ~ t l o n s  
and a s  a r e s u l t  had o b t a i n e d  u n j u s t i f i e d  r o o t s  o f  t h e  c h a r a c t e r i s t i c  e q u a -  
t i o n .  

~8 
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The above survey of the literature indicates not only the lack of a single 
approach to the question of the stability of the equilibrium states of non- 
holonomic systems, but also the contradictions in the methods of investigating 
the stability. Indeed, if Whittaker was correct in integrating the linear- 
ized non~lolonomic constraint equations, then Bottema was wrong in the results 
he obtained on the zero roots. However, if Bottema was right, then Whittaker 
made a fundamental error in his investigation of the stability of the equi- 
librium of'nonholonomlc systems. But then, there remains the ambiguity i~ 
the interpretation of the nature of the zero roots: Bottema, Aiserman and 
Gantmacher associated the appearance of the zero roots with the critical case 
in the sense of Liapunov, whereas Kniazev did not consider this case to be 
critical. Obmorshev treated the appearance of zero roots as an ambiguity 
which arises because the linearized nonholonomic constraint equations are 
not integrated. 

In the present paper we shall show that a nonholonomic system has the 
peculiarity that its equilibrium states cannot be isolated but form a mani- 
fold whose dimension is not less than the number of non/%olonomic constraints. 
This peculiarity stipulates the presence of zero roots in the characteristic 
equation. A theorem is formulated on the a~ymptotic stability of the mani- 
fold of equilibrium states. Examples illustrate the above statement. 

i. ~qulllbrlum m%&te manifold of & nonholonomlo Byltem. Let the motion 

of a system with the Lagrange function 

L = L ( q ~ , . . . ,  q~; q~ , . . . ,  q,~') 

and the generalized forces 

Q ~ ( q ~ , . . . ,  q,~, q ~ ' , . . . ,  q~') . . . . .  Q ~ ( q ~ , . . . , q , ~ ,  q,', . . . .  q,') 

be subject to nonholonomic constraints expressec by Equations (*) 

~ ( q l ,  • • . ,  q D  q~" = 0 (~ = 1 . . . . .  ,,~; ~ = l  . . . . .  n) ( 1 . 1 )  

Let us set up the equations of motion with undetermined multipliers 

d OL Ot --  O~ + ~ (1.2) 
dt Oq~" Oq~ 

The system of Equations (I.I) and (1.2) permits us to determine the 

ql,'--, qn, kl,-.., km as functions of time and of the initial values. It 

follows from Equations (1.1) and (1.2) that the equilibrium states of a non- 

holonomic system are determined by the n equations 

OL/Oq~ + Q~ + ~ = 0 (1.3) 

in the n + m unknowns q~ .... , q ~ ,  k~,..., k.. By virtue of this, in the 

general ease we have a manifold of equilibrium states which forms a m-dimen- 

sional surface 0, In the n-dlmensional configuration space. Indeed, by 

expressing the generalized coordinates ql,.'., q~ in terms of ~,..., k, 

by means of Equations (1.3), we obtain the surface 0, in the parametric 

represen~atlon q o ~__ q o (~I,'- ", ~m), (~ ~ I~"" ", ~)" Let us note that 

in actual problems (see the examples given below) not all of Equations (1.3) 

may turn out to be independent. In such a case the dimension of the equi- 

llbrlum state manifold will be greater than m . 

*) Here and in what follows a twice-repeated index implies summation, and a 
dot on a letter or on a paranthesis denotes differentiation with respect to 
time. 
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Let us eliminate the undetermined multipliers from Equations (1.2) and 

write the equations of motion (i.i) and (1.2) of the nonholonomic system, in 

t h e  normal f o r m  ____dx i _ :  f i  ( X , ,  . . . ,  X 2 n - m )  ( i  : 1 ,  . . . ,  2 n  - -  m )  ( 1 . 4 )  

d t  
where by x~ we denote the variables ~ , . . . ~ ,  ~ / , . . . , ~ ' .  In the phase 

space (xl,... , x2~_,) let the surface 0, be defined by Equations 

x~ ° :=  xi ° ( u l  . . . .  , u . t )  ( i  = 1 , . . . ,  2n--m). 
Along with the variables u~ ,..., u .  let us introduce the new variables 

u~ , . . . ,  v~(n_.) by the relations 

z~ = x~  ° ( u ,  . . . .  , u r n )  + ~ ( u ,  . . . , u ~ )  v j  

(i  = 1  . . . . .  2 n - - m ;  f = l  . . . . .  2 ( n  ~--m)) 

In t h e  new variables Equations (1.4) are written as 

du~ / dt  = g~ (u, v), dv j  / d t  = gj (u,  v) (1.5) 
Let us linearize the equations of motion (1.5) in the neighborhood of the 

equilibrium state surface• Expanding the right-hand sides of Equations (1.5) 

in a series of the small quantities v~ ,..., ~2(~-.~ , we get 

d u i 
~¢t - -  a i ( u l  . . . .  , U r n  ) + a . ( u . , . . ,  U r n )  v j + o ( l l v l D  + . . .  

d l~ .] 

d t  
-- bj (u 1 ....  , u,n) + bjk (Ul,. . . ,  urn) vk + 0 (It ~}~ ) + " "  

i ~ -  1 , . . . ,  m ] 

i, k = ~,..., 2 (n - -  m)] 

II v l t - -  ( V l  2 ? v.2 2 + • • . - k  v2~.-m)) '/" ( 1 . 6 )  

H e r e  t h e  e x p r e s s i o n  O([Ipll  2 ) d e n o t e s  t e r m s  o f  n o t  l o w e r  t h a n  t h e  s e c o n d  

order of smallness in NuN It is not difficult to see that in Equations 

(1.6) the expansion coefficients a i and ht are equal to zero because the 

quantities 
Vl, P2,• Vl" , . 

g 
Ul" , . a m  • • . ,  . . ,  ~ ( n - m }  t • . ,  

vanish on the surface 0,. The characteristic equation of system (1.6) for 

any point of surface 0, has the form 

p 0 . , . 0 a u  a l ~  • • • a l ,  2 ( n - m )  

0 p . . . 0 a ~  a ~ ,  • • • a 2 ,  2(n-m) 

. . . . . . . . . . . . . . . . . . . . . . . . . .  • . . . . . .  

0 0 • • • P aim am2 • " • a m ,  2(n-m) 

0 0 . . . 0 b ; 1 - - p ,  b12 • • • b l ,  2 ( n - m )  

0 0 • . . 0 b21 b ~ - - p  . . . b ~ , ~ ( n _ r n )  

0 0 . . . 0 b 2 ( n - m ) , l  h i ( n - m ) , 2  • • • b 2 ( n - m ) ,  2(n-m) - -  P 

from which the presence of m zero roots Is immedlately apparent. 

- -  o 0 . 7 )  
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Thus, the number of the zero roots of the characteristic equation is not 

less than the dimension of the equilibrium state manifold (*). 

2. Ampmp~o~io B~abili~y ~heorem for ~he equilibrium s~a~e manifold, 
From the preceding discussion it follows that it is meaningful to study the 

stability of the equilibrium states of a noruholonomic system only with res- 

pect to small deviations from the surface C, 

In connection with this it is natural to consider the second group of 

equations in ~ystem (1.6) independently of the first group of equations, 

temporarily treating the variables ul ,..., ~ as parameters. 

The characteristic polynomial of this auxiliary system differs from deter- 

minant (1.7) only in the absence of the factors pm. 

Let us assume that in some region G the values of ~i,..., ~., the equi- 

librium state" V I = V 2 = • • • = V2(n_m ) ~ 0 of the system of equations 

dv j  / d t  = bjk (Ul, . . . ,  urn) v k i ] , k = t  . . . . .  2 ( n - - m ) )  ( 2 . 1 )  

is asymptotically stable, so that 

l lv i l<M[ Iv° l le  -¢t (s>O, O < M < ~ )  
o 

Here the ~ are the initial values of the variables ~. Then, there 

holds the following theorem on the asymptotic stability of the equilibrium 

state manifold of a nonholonomic system. 

T h e o r e m Let the initial values 

Ul  o o ?]1 o ~o 
, • • • , U m , , • • • 1 2 ( n - m )  

o 
be such that the values u~ .... , u~ lie inside the region G of asymptotic 

stability of Equations (2.1) and that the magnitudes cf 

Yl °, ... , 7 ) ° 2 ( n - m )  

are sufficiently small. 

Then, by virtue of the equations of motion of a nonholonomic system 

du~ dvj  
dt - -  g i  (U,  Y), dt  - -  g~ (U, V) (i = 1 . . . . .  m; S = t . . . . .  2 ( n - -  m)) (2.2) 

the limit relations 

lira vj (t) = 0, l im ui (t) = ui* 
t - + - 4 - ~  t - - ~ t  - o o  

are satisfied, where Ui* ~ 0 m, but in general Ui* ~Ui °. 

Here, for the variables v~ (t) we have the estimate 

l i v ( t ) l l < M ' l l v ° l [ e  -° ' t  ( o < a ' < z ,  o <  M ' <  ¢~) (2.3) 

P r o o f Let us write Equations (2.2) in the form 

d v j / d t  = {bjk (u 1 . . . . .  urn ) 45- A b j ~ }  v k [ ,  k : t . . , 2 ( n  - -  m )  

*) The case when the number of zero roots of the characteristic equation is 
larger than th~ dimension of the equilibrium state manifold 0, should be 
considered as a special case. 
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where [Aa~l[  < ¢ 
the inequalities 

II ~ -- "° li < ~ (~), [[ v II < 6 (~) 
are satisfied. 

As long as inequalities (2.5) are satisfied, the estimate (*) 

I[ v (t) [I < M '  ][ v ° ti e-~'t (o'  > O) (2.6) 

holds for the solution of Equations (2.4) for a sufficiently small value 
6 = 6" . 

Therefore, N 
]l u" ]l < N 11 v° ]1 e-a't, I1 u (t) II < ~ II v° I1 (2.7) 

Let the inequality 

( 6 "  6 " o '  ~ * )  (2.8) 
[I v° [I < rain ~--M, 2N ' 2 ~ 

be satisfied for a selected value 6 = 6". 

At the initial instant t : O condition (2.5) is satisfied for 
therefore, because of the uniform continuity in time t of the solutlon, lt 
will be satisfied over a sertain time interval At0~T~0. 

A* 

and [nb~kj<: ~ only if ~or sufficlently small 8(C) , (6 (e )> t .~ ) r  

(2.5) 

Fig. 1 

8 = 5*/2; 

Hence it follows that over this time 
interval estimates (2.6) and (2.7) hold. 
AfZer a lapse of time Ate , by virtue of 
these estimates and of inequality (2.8), 
the magnitude of o(At o ) satisfies inequal- 
ities (2.5) with 6 = 6"/2 . But then it 
follows that these inequalities will be 
satisfied over some time interval 

At o +  At 1 ~-2T.  

By continuing this argument we establish 
that estimates(2.6) and (2.7) hold at any 
instant of time t > O since if they hold 
for the instant Ato + °.. + At,_~, they also 
hold for the next time interval Ats ~ 0 .  

1~ne assertion of the theorem follows from 
the satisfaction of estimates (2.6) and 
( 2 . 7 )  for all t . 

*) 
a posltlve-deflnlte quadratic form V : 

II v If* < V = C~.j%vj < ~ [I ~ J~ (~, ~ > 0) 

such that dV 

d-y<-- ~]Iv]~<-- ~ (~>o) 

for arbitrary, sufficiently small variations of the coefficients 
when the inequalities (2.5) are satisfied with sufficiently small 
(i) and (ll) we get 

V < V It=o e - (~#' ) t  
and, consequently, 

[ Iv"  I < T I] v°lf ~ e -(~j~)t ,  or I,v ][ < " " ( + ' f i t [ I v °  [, e ~ )t 

which is what was required. 

Indeed, according to [6], for the system of equations (2.1) there exists 

(1) 

(ll) 

b~, i.e. 
¢ . From 
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~. ~ I | .  As the first example let us consider the motion of a rigid 
body parallel to an inclined plane. Let the body rest on the inclined plane 
on three legs, two of which are absolutely smooth while the third leg is 
equipped with a semicircular blade, consequently, the third leg cannot be 
displaced in the direction perpendicular to the plane of the blade. 

We consider the case when the projection of the body's center of gravity 
onto the inclined plane lies on the straight line perpendicular to the blade 
and passlng through the point K of contact of the blade with the inclined 
plane (Fig.l). 

The generalized coordinates of the body are the coordinates x and Y 
of the point K and the angle ~ . 

The Lagrange function is 

L = 1/~ m [ ( x ' 4 -  a~" c o s ~ )  2 4-  (y" 4- a~" s i n ~ )  2 4- k ~  "~1 - -  mg s i n a  (y - -  a c o s q )  

though there is only one equation of nonholonomlc constraint. The increase 
by one In the dimension arises because two of the three equations in (3.3) 

where m is the mass of the body and k its radius of gyration. 

We introduce the dissipation function 

q~ = 1/2 mh (x "~ 4- y'2) 4- 1/2 mhl~'2 

where h~0 and h~0 are the viscous sliding and rotational friction coef- 
ficients, respectively. The nonholonemlc constraint is expressed by Equation 

y ' - -  x'tanq = 0 (3. t) 

From the consideration of inertia we set up the equations of motion of 
the body 

(x" 4-  aS" cos ~)" 4-  hx" 4- ~ t a n ~  = 0 (3.2) 

(y" "-[- a~" s in  g)" 4- hy" 4- g s in  a - -  ~. = 0 ~ 

a (x" ¢ o s ~  4-  y" s i n ~ ) "  4-  (a 2 4- k 2) ~'" 4- ht~" 4- ga s in  
s i n ~  = 0 

From (3.1) and (3.2) we get the equations for the 
equilibrium staSes ,~,,/,,.,,+/,/,~ 

r 

k t a , ~  = O, k = g s i n ~ ,  s i n g  = 0 (3.3) h,* h, 

Fig. 2 

sre not independent. By setting 

Y 

~" Z 

Thus, the equilibrium states from the two planes: 
= 0 and ~ = w , whose dimensions are two, even 

Fig. 3 

whence it follows that the plane 

X = X o 4- ~ , Y = Y o "-I- "q 
q~ = % 4 -  ~, ~ =  X o ÷ O  

where xo, Yo, ~o, k o a r e  the equilibrium 
values of the variables, we linearize 
the equations of motion (3.1) and (3.2) 

~1 = O, ~ " 4 -  h ~ ' q - a ~ " 4 -  g s i n a ~ =  0 
n "  4-  hn '  - -  0 = 0 

a~'" 4- (a ~ 4- k 2) ~'" 4-  hl~" -4- ga s in  c ~  = 0 

H e r e ,  t h e  u p p e r  s i g n  r e f e r s  t o  t h e  
p l a n e  ~ ~ 0 a n d  t h e  l o w e r ,  t o  t h e  p l a n e  

= ~ . The characteristic equation is 

p2 {k2p3 4- [h (a~ -5 k 2) 4- hi] p2 4- 
4- hhtp 42_ hga s i n ~ }  ---- 0 

- ~ is always unstable, while the plane 
is stable only if the inequality 
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(a ~ + ~2) hh I > k2 ga sin a - -  h11~ 

i s  s a t i s f i e d .  

The boundary of the stability region in the (h, ,~)-plane is shown in Fig. 
2, where h3* =: k ]/ 'ga, sincz. 

As second example let us consider the motion of an axlsymmetric body 
bounded below by a spherical surface of radius ~ , which can roll without 
slipping in a bowl of radius R: . The body's center of gravity is located 
at a distance Z from the center of its spherical surface. In the notations 
of Fig.3 the generalized coordinates of the body are the angles 0,$,~,01 ,$:. 

The Lagrange function is 

L ----- x/11 m (R 1 - -  R) $ (01"11 -4- ' 1  "11 sin* 01) -~ 1/2 (44 q- mill) (0"11 -4- ~'11 sin ~ 0) -b 

-[- ml  (R 1 - -  R) {*'qh" s in  0 sin 01 cos (~ - -  ~x) q-  0"01" [cos 0 cos 011 cos (~ - -  *x) + 

"4- sin 0 s in  01] + 0"~t" cos 0 s in  01 s in  (~ - -  ~x) - -  ~ '01 '  s in  0 cos 01 s in  (~ - -  ~1)} + 

-~- x/2 C (~" -k- ~" cos 0)11 + mg [(R 1 - -  R) cos 0 - -  l cos 01] 

where m is the mass of the body, C its axial moment of inertia, A is 
the central-equatorial moment of inertia, g is the gravitational accelera- 
tion. By assuming that the dissipation of mechanical energy takes place 
because of the presence of friction, we introduce the dlsslpatloD function 

q~ = V,  h (Rx/R - -  t)11 (01"11 -& ~1"11 s i n '  On) + 1/2 hi {~p" c o s  01 - -  0" sin 01 sin (~p - -  ~Px) + 

+ q:" [sin 0 sin 01 cos ( ,  - -  ' 1 )  + cos 0 cos 01]} ~ 

w h e r e  h ~ 0 and  hx > / 0  a r e  t h e  v i s c o u s  r o l l i n g  and  r o t a t i o n a l  f r i c t i o n  c o e f -  
f i c i e n t s ,  respectively. The condition of rolling without slipping leads to 
the two nonholonomlc constraint equations 

(R~ - -  R) *x" sin O~ ~r" RO" cos Ot s in  ( ,  - -  ,~)  Jr- R , "  s in  O~ -~ 
-& R¢~" [cos O sin St - -  s in  0 cos 0~ cos ( ,  - -  lp~)] = 0 (3.4) 

(Rt  - -  R) 0t" + R0" cos ( ,  - -  ,x )  -4- R$" sin 0 s in  ( ,  - -  ,~)  = 0. 

Setting up Equations (1.2) for the motion of the body by considerations 
of inertia, where the generalized forces will be Q~ ~ -- 0(I)~ 0qB', we get 
the following equilibrium equations : 

~ sin 0~ : 0. mg sin 0~ : k11. k t s in  0~ = 0 (3.5) 

mgl  sin 0 = R~,  cos 0t sin ( ,  - -  ,~)  + R~.~ cos ($ - -  ~Px) 

kt  leo.Y0 sin 0t - -  s in 0 cos 0~ cos (~ - -  ~ . ) ]  -& ~.~ s in  0 s in  ( ,  - -  ,1)  = 0 

Prom Equations (3.5) it follows that the surface O. of the equilibrium 
states of the system is defined by Equations 

= *~, 1 s in  0 = R s in  0t (3.6) 

and la three-dlmenalonal. The increase by one in the d~menalonality of the 
equilibrium state manifold arises because t h e  first and third equations of 
system (3.5) are not independent. Let us introduce dimensionless quantities 
by means of the relations 

A 6 l 
=tl ,  R] ' a--mR,, ~--mm' * = n -  

R t h h I 

and  l e t  us  l i n e t u ' I z e  E q u a t i o n s  ( 1 . 2 )  and  (3 .1 t )  i n  a n e i g h b o r h o o d  o f  t h e  
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equlllbrlum state surface (3.6), Denoting the derivation of a varlable from 
Its equlllbrlum value by attaching a minus slgn as a subscript to the symbol 
of that variable, after ellmlnatlng the undetermined multipliers we obtain 
the following llnearlzed equations: 

[ ~  + ~2 ~ T COS (0  - -  01)]  0_'"  ~ -  ~ 0 -  COS 0 -- (p  - -  ~) [ I  - -  "~ COS (0 - -  01)] ~ 01- '"  - -  

6 (p - -  t )  01" - -  COS 0101_ = 0 

( a  s i n  2 0 + ~ co# O) xp_'" + 51 cos ~ 01,_" - -  fi (p - -  i )  s in  2 01~l-" + ~ cos 0~_"~+ 
+ 6 1  cosOtcos  (0--01)  ¢p '_=O 

~q~-'" + 81 oos~ (0 - -  01) q~-" + (p - -  1) s in  01 s i n  (0 - -  01) Xpl'" + 
+ 6 s i n  01 s i n  (0 - -  01) * i - "  + T s i n  ~ 0 , 1  + [~ cos  0 + 

+ T s i n  0 s i n  (0 - -  01)] , _ ' "  + 61 cos  01 COS (0 - -  01) ~[~-" - -  Z s in  ~ 0 , _  = 0 

(p - -  t )  s i n  01.1_ + s i n  01xp_ - -  s i n  (0 - -  01) q~_" = 0 

( p - - t )  01" + 0_" ---- 0 

Here ,  i n  c o r r e s p o n d e n c e  w l t h  ( 3 . 6 )  we have t h e  r e l a t i o n  

T s in  O = s i n  01 

satisfied at the equillbrlum state. The characteristic equation of the sys- 
tem being, considered takes the form 

p3 [aop~ _I_ 8 (p - -1 )  p -I- al] (bop 3 + blp 2 -~- b2p + b~) = 0 
Here 

a o = ( p - - 1 )  [ ~ + I - - 2 T  cos (O - -  01) + ~ ]  

a l = c o s  0 1 + T ( p - - 1 )  cosO 

b o ~ - ( p - - l )  (a~+a2b) ,  u = cos 01--  T cos O, b = a s i n  s 0 + ~  cos 2 0 

bx = (p - -  t )  {6 [~ + (cz - -  ~ + T 2) s i n  2 (0 - -  01)] ~- 
+ 61 [a  + ( ~ - -  a) s i n  2 ( 0 - -  01) + a '2 cos  2 01]} 

b 2 = 6 8 1  ( p - - I ) + p ~ T  cos O + a b  

ba = 81 [PT cos  01 cos  ( O - - O 1 ) +  a cos z 0 1 ] -  5 (p ~ ~) a s i n  ~ O1 

For the parameter values p > l , 0 < y < i , the stability region for 
the system's equilibrium state manifold Is determined by the inequalities 

(3.7) 

ba'~O, b lb~--boba~O (3.8) 

04 

02 

I 
~ '8=90° 

/ / / / / ( / / < t ~ 1  

Of 

~5 ~ 

0 04' 

Flg. 4 

Flg.4showsthestablllty region bottnd- 
aries In the (61, 6 )-plane, constructed 
for a homogeneous semisphere (a = 0.26, 
B - 0.4, Y " 0.375) which rolls without 
slipping In a spherical bowl. The cal- 
culations were carried out for the case 
when the radius of the semlsphere was 
one-fourth the radius of the bowl. 

N o t e From Expression (3.7) it 
follows that'as p ~ ® , where the spher. 
Ical bowl degenerates Into a plane, the 
stability conditions (3.8) are satisfied 
for any value of y > 0 . In partlcular, 
all the equ~llbrlum states of a semi- 
sphere on a plabe are stable. 
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