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The problem of the stabllity of the equllibrium states of nonholonomic sys-
tems has been considered in the works of Wnittaker [1], Bottema [ 2], Aiser-
man and Gentmacher [ 3], Obmorshev [4], Kniazev [5) and others. However, the
methods ¢f investigating the stability as proposed in these papers, and the
point of view regarding the nature of the zero roots, are not quite consis-
tent. As 18 well known, Whittaker considered it possible to integrate the
linearized equations of nonholonomic constraints, after which the dirference
between holonomic and nonholonomic systems would disappear. Essentlally,
Whittaker réduced the stability problem of the equllibrium states of a non-
holonomlic system to the corresponding problem for a holonomlic system in which
the number of generalized cocrdinates was decreased by the number of nonholo-
nomic constraint equations, Bottema cast doubts on Whittaker's deductions
and, by eliminating the inaccuracies in the reasoning, showed that in con-
trast to a holonomic system the characteristic determinant of a nonholonomic
system 1s asymmetric and that the characteristic equation of a nonholonomic
system has zero roots equal in number to the number of holonomlc constraint
equations., In view of this, Bottema concluded that here occurs a critical
case of the stability theory for isolated equilibrium state. Consequently,
the question of the stability of the equilibrium of a nonholonomic system

in the linear approximation still remains open because to-date we do not know
the general conditions for the stsbility of systems whose characteristic
equation has an arbitrary number of zero roots, However; Alszerman and Gant-
macher noted that in the given case the problem has been completely solved.
They showed that this problem reduces to a special case which has been com-
pletely investigsated by A.M.Liapunov and I.G.Malkin, Aisermsn and Gantmacher
established that the equilibrium state of nonholonomic system is stable (but
not asymptotically) if all the roots of the characteristic equation, besides
the zero roots which in number equal the number of nonholonomic constraint
equations, have negative real parts. Relying on this result, Kniszev sug-
gested that we should consider as critical only those cases in which the num-
ber of zero roots of the characteristic equation is larger than the number
of nonholonomic constraint equations. In his own paper [5], Kniazev stud-
led the case where the number of zero roots was one more than the number of
nonholonomic constraint equations. Finally, we mention the paper [4] of
Obmorshev who considered the linearized equations of small oscillations of

e nonholonomic system near the equilibrium state in the general case, and
also the equations of small oscillations relative to the stationary motion
of & Chaplygin system. With regard to the zero roots, Obmorshev noted that
Bottema had not integrated the linearized nonholonomic constraint equations
and as a result had obtained unjustified roots of the characteristic equa-~
tion.
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The above survey of the literature lhdicates not only the lack of asingle
approach to the question of the stability of the equilibrium states of non-
holonomic systems, but also the contradictions in the methods of investigating
the stability. Indeed, if Whittaker was correct in integrating the linear-~
ized nonholonomlec constraint equations, then Bottema was wrong in the results
he obtained on the zero roots, However, if Bottema was right, then Whittaker
made a fundamental error in his investigation of the stabllity of the equi-
librium of nonholonomic systems. But then, there remains the ambiguity ih
the interpretatlion of the nature of the zero rocots: Bottema, Alserman and
Gantmacher assoclated the appearance of the zero roots with the critical case
in the sense of Lliapunov, whereas Knlazev did not consider this case to be
critical. Obmorshev treated the appearance of zero roots as an amblgulty
which arises because the linearized nonholonomlc constraint equations are
not integrated.

In the present paper we shall show that a nonholonomlc system has the
pecullarity that its equilibrium states cannot be isclated but form a mani-
fold whose dimension is not less than the number of nonholonomic constraints.
This peculiarity stipulates the presence of zero roots in the characteristic
equation., A theorem 1s formulated on the asymptotic stability of the mani-
fold of equilibrium states. Examples 1llustrate the above statement.

1, Equilibrium state manifcold of & nonholonomio system. Let the motion
of a system with the Lagrange function

L=1L(qy .- 9 ‘117-"7(171’)
and the generalized forces
Qg - - v @ @1y @)ooy QnlGu oo Gy @1y )
be subject to nonholonomic constraints expressec by Equations (*)
®us (qq, - . -, qn) gs =0 (@=1,...,m; B=1t,..., n) (1.1)
Let us set up the equations of motion with undetermined multipliers
d 9L _ L 04t hawas (1.2)

di dqy  Oqg

The system of Equations {(1.1) and (1.2) permits us to determine the
@is+-+> @ns> M s-e-5 h, a8 functions of time and of the initial values. It
follows from Equations (1.1) and {(1.2) that the equilibrium states of a non-
holonomlc system are determined by the » eqguations

oL/ 9gs + Qp + hgwap = 0 (1.3)

in the n +m unknowns g, ,..., 9,5 Ay s..+, A,. By virtue of this, in the
general case we have a manifold of equilibrium states which forms a m~dimen-~
sional surface ¢(, in the n-~dimensional configuration space. Indeed, by

expressing the generalized coordinates g4,,..., ¢, in terms of X ,..., X,
by means of Equations (1.3), we obtain thé surface ¢, in the parametric
representation ¢g°® = ¢g° (Ay, . . ., Ap), (B =1, ..., n). Let us note that

in actual problems {see the examples given below) not all of Equations (1.3)
may turn out to be independent. In such a case the dimension of the equi-
librium state manifold will be greater than m .

*) Here and in what follows & twice-repeated index implles summation, and a
dot on a letter or on a paranthesils denotes differentiation with respect to
time.
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Let us eliminate the undetermined multipliers from Equations (1.2) and

write the equations of motion (1.1) and (1.2) of the nonholonomic system in

the normal form g,

TLL = fi(Zy - - - Tan-m) (i=1,...,2n—~m) (1.4)
¢

where by x, we denote the variables gisvee@ns 4" +..5¢1+ In the phase
space {x,,..., ¥,,..) let the surface ¢, be defined by Equations

2 = 2% (uy, ..., up) (i=1,..., 2n—m).
Along with the varilables u,,..., u, let us introduce the new variables
Vyseves Up(n-g DY the relations

=2 (Uy, ooy Um) + Tij Uy - -, Um) Y
=1, ... . 2n—m;j=1,...,2("n —m))
In the new varlables Equations (1.4) are written as
du; / dt = g; (u, v), dv; [ dt = g; (u, v) (1.5)

Let us linearize the equatlons of motion (1.5) in the neighborhood of the
equilibrium state surface. Expanding the right-hand sides of Eqpations-(l.B)
in a serles of the small quantities v, ,..., Vy(,-q » W€ get
du;

1

PTe = ai(ul,..., um) + aij(ul,..., Ltm) Uj“%‘O(”v“z) +

( i=1,...,m )
dv; j, k=1,...,2(n—m)
i = Uiy ug) F b (uy, uy) v+ O () +

lof= (0,2 + 02+ ... + vonm)” (1.6)

Here the expression ¢{|[v}|?) denotes terms of not lower than the second
order of smallness in |vf! It 1s not difficult to see that in Equations
(1.6) the expansion coefficlents @, and b, are equal to zero because the

quantities . . . .
b Doy vy Vaaemyy Uy oy - o oy Uginemys Up 4 0 o oy Um

vanish on the surface ¢,. The characteristic equation of system (1.6) for
any point of surface ¢, has the form

p 0 ... 0 an ar c A stnem)
p ... 0 an (e H < %, 0mem
0 0 ... p a, [N o B amem)
bll — D, bl? P bl, 2(n-m) == O (1.7)
0 ... 0 bxn bepe—p cee by 2(n-m)
60 0o ... 0 bs(n~m),1 be(n-m),a bZ("*’"). 2(n-m) p

from which the presence of m 2zero roots is immediately apparent.
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Thus, the number of the zero roots of the characterlstic equation 1is not
less than the dimension of the equilibrium state manifold (*).

2. Asymptotic stabllity theorem for the equilibrium state manifold,
From the preceding discussion it follows that it is meaningful to study the
stability of the equilibrium states of a nonholonomic system only with res-
pect to small deviations from the surface 0,

In comnection with this it 1is natural to consider the second group of
equations in system (1.6) independently of the first group of equatioens,
temporarily treating the variables vy,,..., u, as parameters.

The characteristic polynomial of this auxiliary system differs from deter-
minant (1.7) only in the absence of the factors pU .

Let us assume that in some region ¢ the values of vy,,..., u,, the equl

1ibrium state‘ Uy = Vg = ... = Va(n-m) = () of the system of equations
dv; | dt = by (Uy, « - -, Upy) Vg G k=1,...,2(n—m)) (2.1)
is asymptotically stable, so that
o< M[o°[e (6>0, 0<C M <L o)
Here the uJ° are the initial values of the varilables vy . Then, there

holds the followlng theorem on the asymptotic stabllity of the equilibrium
state manifold of a nonholonomic system.
Theorem . Let the initial values
o [e] (o]
uloy"'yumvvl,"°sv2(n‘m)
be such that the values uf,..., um° lle inside the region (¢ of asymptotic
stability of Equations (2.1) and that the magnitudes cf

o o
Uy 'y enoy V 2(n-m)
are suffilciently small.

Then, by virtue of the equations of motion of a nonholonomic system

d o d .
Smnw), Se=gwv)  G=te,mi=t..,20—m) (2.2)
the limit relations
lim 7.7]' (t) = O, lim Uu; (t) == ui*
t—+-fco t-4o00

are satisfied, where u;* & O,, but in general u;* =f=ui°.

Here, for the variables wv,(¢) we have the estimate

o (@) << M'|v° et (0<L6" <6, 0 M < o) (2.3)
Proof . Let us write Equations (2.2) in the form
du’i/ dt = {aij (uli RO um) + Aaij} vj <l =1...,m ) (2.4)
dvj/dt= {bjk(ul, ceey Ugy) Abjk} Vg hk=1...,2(n~ m)

*) The case when the number of zero roots of the characteristic equation 1is
larger than the dimension of the equilibrium state manifold ¢, should be
conslidered as a special case.
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where |aa,,|<e and |ab,,|<e only if tor sufficiently small 6(c), (6(c)>0).
the inequalities

lu — u® | < 8 (8), 2] <6 () (2.5)
are satisfled.
As long as inequalities (2.5) are satisfied, the estimate (*)

lv@ <M joofet (o’ > 0) (2.6)

holds for the solution of Equations (2.4) for a sufficiently small value
5 = &% ,
Therefore,

. N
lu <N e, Je@l<—5 12" 2.7
Let the inequallty

8% &*g’' OF
| v° | < min (m-, SN -2—> (2.8)

be satisfled for a selected value § = §*.

At the initial instant ¢ = O conditlon (2.5) is satisfied for & = §%/2;
therefore, because of the uniform continuity in time ¢ of the solution, it
will be satisfled over a sertain time interval Aty > 1> 0.

Hence 1t follows that over this time
interval estimates (2.6) and (2.7) hold.
After a lapse of time At, , by virtue of
these estimates and of inequality (2.8),
the magnitude of v{at,) satisfles inequal-
ities {2.5) with & = §*/2 . But then it
follows that these inequalitles will be
satisfied over some time interval

Aty + Aty > 27,

By continui this argument we establilsh
that estimates (2.6) and (2.7) hold at any
instant of time ¢ > O since if they hold
for the instant at¢,+ ... + At,_,, they also
hold for the next time interval Af > v > 0.

The assertlon of the theorem focllows from
the satisfaction of estimates (2.6) and
(2.7) for all t .

*) Indeed, according to [6], for the system of equations (2.1) there exists
a positive-definlte quadratic form V :

a|vP <V =Cpppr; <BlvE (@ B>0) (1)
such that av x
T <—TIPFL<—3V (r>0 (11)

for arbitrary, sufficiently small variations of the coefficients p,, , 1l.e.
when the inequalities (2.5) are satisfied wlth sufficiently small ¢ . From
(1) and (11) we get

V-V g e @
and, consequently,

afvip<ylocpe®, o }Ivﬁ<(%—-)ll’ﬂy° | e~(BRa)

which 1s what was requlred.
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3. Examples. As the first example let us consider the motion of a rigld
body parallel to an inclined plane. Let the body rest on the inclined plane
on three legs, two of which are absolutely smooth while the third leg is
equipped with a semicircular blade, consequently, the third leg cannot be
displaced in the direction perpendicular to the plane of the blade.

We consider the case when the projection of the body's center of gravity
onto the inclined plane lies on the stralght 1line perpendicular to the blade

and passing through the point k% of contact of the blade wlth the inclined
plane (Fig.1l).

The generallzed coordinates of the body are the coordinates x and y
of the polnt x and the angle ¢ .

The Lagrange function 1s
L="Y,m [(z + a¢ cosq)? + (y -+ ag sin¢)? + k%?] — mgsina (y — a cosg)

where m 1s the mass of the body and x 1ts radius of gyration.
We introduce the dissipation function

© = 1, mh (z2 + y?) + Yy mhy@*

where h >0 and h; > 0 are the viscous sliding and rotational friction coef-
ficients, respectively. The nonholonemic constraint is expressed by Equation
y' — z'tang = 0 3.1)

From the consideration of inertia we set up the equations of motion of
the body

(=" 4 a¢’ cosg) 4 hz" + Atang = 0 (3.2)
W + ag sing) 4 hy -+ gsina—h,zd d
af{z' cosq -+ y sing)' 4 (a® + k2 ¢ + h§ - ga sina
sing =0

From (3.1) and (3.2) we get the equations for the
equilibrium states

Aang = 0, A= gsina, sing = 0 (3.3) nt h

Thus, the equilibrium states from the two planes: Flg. 2
o =0 and ¢ = mn , whose dimensions are two, even
though there is only one equation of nonholonomic constraint. The increase
by one in the dimension arises because two of the three equations in (3.3)
sre not independent. By setting

Z=1'0+§, y=y0+ﬂ
¢=¢o+ & A=k +0
where x,, Yos % s Ao are the equilibrium

values of the variables, we linearize
the equations of motion (3.1) and (3.2)

n =0, £+ kE 4+ al 4+ gsinal= 0
nw+m—-06=0
+at F @+ KT L gasinal =0
Here, the upper sign refers to the

plane ¢ = O and the lower, to the plane
® =nm . The characteristic equation 1is

PR + (R (a® + K + Iy] p? +
~+ hhyp + hga sina} =0

Fig. 3

whence it follows that the plane ¢ = nm 1s always unstable, while the plane
o = O 1is stable only if the inequality
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(a® - k) hhy > k% ga sina — A%
1s satisfled.

The boundary of the stability regilon in the (h, ,n)-plane 1s shown in Fig,
2, where j* =k Veasina.

As second example let us consider the motion of an axlsymmetric body
bounded below by a spherical surface of radius #® , which can roll without
slipping in & bowl of radius R, . The body's center of gravity 1s located
at a distance | from the center of 1its spherical surface., In the notations
of Fig.3 the generallzed coordinates of the body are the angles 8,{,9,9,.,V, -

The Lagrange function is

L =1, m Ry, — R)® (0, + P, % sin? 0,) 4 1/, (4 + mi?) (8" + 2 sin? 0) +
-+ ml (Ry — R) {}"," sin 0 sin 0, cos (Y — ;) + 0°0," [cos 8 cos B, cos (P — P,) P
- sin 6 sin 6;] 4 6"y, cos 6 sin 0, sin (Y — P;) — P8, sin 6 cos 0, sin (p — P}
+ 1, C (" + P cos 8)% + mg [(R, — R) cos 8 — [ cos 0]

where m 1s the mass of the body, ¢ 1ts axial moment of inertia, 4 1is
the central~-equatorial moment of lnertia, ¢ 18 the gravitational accelera-
tion. By assuming that the dissipation of mechanical energy takes place
because of the presence of friction, we introduce the dissipation functlon
D = Y, h (R/R — 1)2 (8,2 + ¥, sin? 6y) + Y, k, {§ cos 0; — 0 sin By sin (Y —P) -

4 ¢ [sin O sin 8, cos (p — ;) -+ cos B cos 6;]}?
where h >0 end hy > 0 are the viscous rolling and rotational frictlon coef-

ficients, respectively. The condition of rolling without slipping leads to
the two nonholonomic constraint equations

(R, — R){, sin 6, -+ RO cos 6, sin (p — ;) + RY’ sin 6, 4~
<+ Rg" [cos 6 sin 8; — sin 8 cos 01 cos (b — ;)] = 0 (3.4)
(B, — R) 0;" + RO cos (p — ;) + R¢ sin 0 sin (p — ;) = O
Setting up Equations (1.2) for the motion of the body by considerations

of inertia, where the generaligzed forces will be QB = — 6@/643', we get
the following equilibrium equations:

Aysin 8, = 0, mgsin 0, = Ay, AySin@; =0 3.5)
mgl sin 0 = RA, cos 0, sin (Y — P;) + RA, cos (P — §,)
A, [cod 0 sin B; — sin 0 cos 0, cos (Y — Py)] 4~ Ay sin O sin (p — ;) = 0

From Equations (3.5) 1t follows that the surface ¢, of the equilibrium
states of the system 1s defined by Equations
Y =1, 1sin 0 = R sin 6, (3.6)

and is three-dimensional. The increase by one in the dimensionality of the
equilibrium state manifold arises because the first and third equations of
system (3.5) are not independent. Let us introduce dimensionless quantities
by means of the relations

g \'h A C
t=t(~R—), o= — B=—n 1=

A W ¥
=R’ mRVgR ' mRVgR

and let us linearize Equations (1.2) and (3.%) in a neighborhood of the
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equilibrium state surface (3.6). Denoting the derivation of a variable from
its equilibrium value by attaching a minus sign as a subscript to the symbol
of that varlable, after eliminating the undetermined multipliers we obtaln
the following linearized equations:
[x+12—7 cos (6 —61)] 6.7 4 16_ cos 6 —(p—1) [t —7 cos (0 —0)] X 0, —
8 (p—1) 0 —cos 0,0, =0

(o sin?0 + B cos? B) P_" + &1 cos? Orp_" — & (p — 1) sin? Oy -+ B cos O~ +
+8 cosBcos (8—0,) ¢ .=0

Bp_" -1 81 cos; (0 — 0)) 9" -+ (p — 1) sin 6, sin (§ — 6,) P -
-+ & sin 0y sin (6 -—_ 01) 'l])],_- ~+ 7 sin? 61.[)1 + [B cos 6 4
~+ 71 sin 0 sin (8 — 65)] Y_" + 81 cos 6; cos (0 —8y) P — 71 sin?2 0Y_ =0

(p —1) sin 6y;_ +sin Op_ —sin (0 —0,) p_* =0
p—1) 6/ 4+0.=0
Here, in correspondence with (3.6) we have the relation
v sin 6 =sin 0
satisfled at the equilibrium state., The characteristic equatlion of the sys-
tem belng considered takes the form

P [2op® + 6 (p —1) p 4 a1] (bop® - bap® 4 bep + b3) =0 3.7
Here
ao=(p —1) [#+1—27 cos (6 —01) 4 1?]

ay=cos B1+7(p—1) cos O
bo=(p — 1) (af -+ a%b), u=cos 6, — 7 cos 0, b=oasinZ 0+ 3 cos? 0

by=(p—1) {8 [B+ (@ —B+17%) sin® 0 —01)] +
+ 81 [o+ (B—a) sin? (0 — 01) + a2 cos? 6,]}

by = 88; (p —1) 4 pBy cos 6+ ab
by = &; [py cos 6, cos (8 —0y) 4+ a cos® 1] —8 (p —1) a sin® 6

For the parameter values p > 1 , O < y < 1, the stabllity region for
the system's equilibrlum state manifold is determined by the inequalities

L T ¥ R ] bs>0,  biby — bobs™>0 3.8)

Fig.l4 shows the stabllity reglon bound-
arles in the (§;, & )-plane, constructed
04 for a homogeneous semisphere (q = 0.26,
g = 0.4, y = 0.375) which rolls without
slipping in a spherical bowl., The cal~
culations were carried out for the case

Lliiis - when the radius of the semisphere was
A 5=30° one-fourth the radius of the bowl.

02 AL e
70° Note . FromExpression (3.7) it
/ — follows that as p ~ = , where the spher-
s 45° ical bowl degenerates into a plane, the
DI >r7795 g5 v stability conditions (3.8) are satisfied
0 02 04 d, for any value of y > O . In partieular,

all the equllibrium states of a semi-
Fig. 4 sphere on a plabe are stable.
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